JAIST Repository >
f. 情報社会基盤研究センター >
f10. 学術雑誌論文等 >
f10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/9936
|
タイトル: | Improving accuracy of host load predictions on computational grids by artificial neural networks |
著者: | Duy, Truong Vinh Truong Sato, Yukinori Inoguchi, Yasushi |
キーワード: | host load neural networks predictor grid computing scheduling |
発行日: | 2010-08-09 |
出版者: | Taylor & Francis |
誌名: | International Journal of Parallel, Emergent and Distributed Systems |
巻: | 26 |
号: | 4 |
開始ページ: | 275 |
終了ページ: | 290 |
DOI: | 10.1080/17445760.2010.481786 |
抄録: | The capability to predict the host load of a system is significant for computational grids to make efficient use of shared resources. This work attempts to improve the accuracy of host load predictions by applying a neural network predictor to reach the goal of best performance and load balance. We describe the feasibility of the proposed predictor in a dynamic environment, and perform experimental evaluation using collected load traces. The results show that the neural network achieves consistent performance improvement with surprisingly low overhead in most cases. Compared with the best previously proposed method, our typical 20:10:1 network reduces the mean of prediction errors by approximately up to 79%. The training and testing time is extremely low, as this network needs only a couple of seconds to be trained with more than 100,000 samples, in order to make tens of thousands of accurate predictions within just a second. |
Rights: | Copyright (C) 2010 Taylor & Francis. This is an electronic version of an article published in Truong Vinh Truong Duy, Yukinori Sato, and Yasushi Inoguchi, International Journal of Parallel, Emergent and Distributed Systems, 26(4), 2010, 275-290. International Journal of Parallel, Emergent and Distributed Systems is available online at: http://dx.doi.org/10.1080/17445760.2010.481786 |
URI: | http://hdl.handle.net/10119/9936 |
資料タイプ: | author |
出現コレクション: | f10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
16191.pdf | | 344Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|