JAIST Repository >
b. 情報科学研究科・情報科学系 >
b11. 会議発表論文・発表資料等 >
b11-1. 会議発表論文・発表資料 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/18171

タイトル: Leveraging Extended Chat History through Sentence Embedding in Multi-turn Dialogue toward Increasing User Engagement
著者: Ding, Zeyu
Elibol, Armagan
Nak-Young, Chong
キーワード: Multi-turn Dialogue
Chatbox
Human-Robot Interaction
発行日: 2022-11
出版者: Institute of Control, Robotics and Systems (ICROS)
誌名: 2022 22nd International Conference on Control, Automation and Systems (ICCAS)
開始ページ: 642
終了ページ: 649
DOI: 10.23919/ICCAS55662.2022.10003889
抄録: Multi-turn dialogue is the major manifestation of a conversation. Compared with single-turn dialogue, response selection is more complex as the context varies. We stress the importance of dialogue history and apply the pre-trained model BERT to assign proper weight to each utterance of a dialogue. Previous works take all the dialogue history as context to measure the matching degree of a context-response pair, causing the quadratic computational cost and truncation of longer sequences exceeding the length limitation of BERT. We propose a sentence-based method to deal with the aforementioned problems, obtaining the sentence embedding of a single unit utterance of dialogue and forming a classification token of a context-response pair. We discuss how to obtain a sentence embedding with high quality and to design the input representations in response selection. The results show that the average of the first-last layer output exhibits the best performance for obtaining a sentence representation. The proposed method, concatenating the sentence embeddings of context with the token embeddings of response candidates, is nearly on a par with the token embedding based SOTA method. Notably, the processable length of dialogue history is enlarged about ten times with a low computational cost, potentially reducing chatbot response time and inspiring user engagement.
Rights: This is the author's version of the work. Copyright (C)ICROS. 2022 22nd International Conference on Control, Automation and Systems (ICCAS 2022), 2022, pp.642-649. DOI:10.23919/ICCAS55662.2022.10003889. Personal use of this material is permitted.This material is posted here with permission of Institute of Control, Robotics and Systems (ICROS).
URI: http://hdl.handle.net/10119/18171
資料タイプ: author
出現コレクション:b11-1. 会議発表論文・発表資料 (Conference Papers)

このアイテムのファイル:

ファイル 記述 サイズ形式
MultTurn_ICCAS2022.pdf600KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係