JAIST Repository >
d. 融合科学系 >
d11. 会議発表論文 >
d11-1. 会議発表論文 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/18244

タイトル: Analyses of Tabular AlphaZero on NoGo
著者: Hsueh, Chu-Hsuan
Ikeda, Kokolo
Nam, Sang-Gyu
Wu, I-Chen
発行日: 2021-03
出版者: Institute of Electrical and Electronics Engineers (IEEE)
誌名: The 2020 Conference on Technologies and Applications of Artificial Intelligence (TAAI 2020)
DOI: 10.1109/TAAI51410.2020.00054
抄録: The AlphaZero algorithm has been shown to achieve superhuman levels of plays in chess, shogi, and Go. This paper presents analytic investigations of the algorithm on NoGo, a variant of Go that players cannot capture the opponents’ stones. More specifically, lookup tables are employed for learning instead of deep neural networks, referred to as tabular AlphaZero. One goal of this work is to investigate how the algorithm is influenced by hyper-parameters. Another goal is to investigate whether the optimal plays and theoretical values can be learned. One of the hyper-parameters is thoroughly analyzed in the experiments. The results show that the tabular AlphaZero can learn the theoretical values and optimal plays in many settings of the hyper-parameter. Also, NoGo on different board sizes is compared, and the learning difficulty is shown to relate to the game complexity.
Rights: This is the author's version of the work. Copyright (C) 2021 IEEE. 2020 International Conference on Technologies and Applications of Artificial Intelligence (TAAI). DOI: 10.1109/TAAI51410.2020.00054. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
URI: http://hdl.handle.net/10119/18244
資料タイプ: author
出現コレクション:d11-1. 会議発表論文 (Conference Papers)

このアイテムのファイル:

ファイル 記述 サイズ形式
I-IKEDA-K0405-21.pdf597KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係